Highly Dispersed Nickel-Containing Mesoporous Silica with Superior Stability in Carbon Dioxide Reforming of Methane: The Effect of Anchoring

نویسندگان

  • Wenjia Cai
  • Lin Ye
  • Li Zhang
  • Yuanhang Ren
  • Bin Yue
  • Xueying Chen
  • Heyong He
چکیده

A series of nickel-containing mesoporous silica samples (Ni-SiO₂) with different nickel content (3.1%-13.2%) were synthesized by the evaporation-induced self-assembly method. Their catalytic activity was tested in carbon dioxide reforming of methane. The characterization results revealed that the catalysts, e.g., 6.7%Ni-SiO₂, with highly dispersed small nickel particles, exhibited excellent catalytic activity and long-term stability. The metallic nickel particle size was significantly affected by the metal anchoring effect between metallic nickel particles and unreduced nickel ions in the silica matrix. A strong anchoring effect was suggested to account for the remaining of small Ni particle size and the improved catalytic performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking- and sintering-resistant dry reforming of methane.

The highly dispersed Ni nanoparticles in mesoporous silica were achieved via using polyol as new delivery conveyors and removable carbon templates. The catalyst exhibits excellent coking- and sintering-resistance in dry reforming of methane attributed to the controlled size and location of Ni nanoparticles.

متن کامل

Investigation of the catalytic performance and coke formation of nanocrystalline Ni/SrO-Al2O3 catalyst in dry reforming of methane

In this study, nickel catalysts supported on mesoporous nanocrystalline gamma alumina promoted by various strontium contents were prepared by the impregnation method and employed in dry reforming of methane (DRM). The prepared catalysts were characterized using N2 adsorption (BET), temperature-programmed reduction and oxidation (TPR,) and oxidation (TPDTPO), X-ray diffraction (XRD), and scannin...

متن کامل

A Comparison Study on Carbon Dioxide Reforming of Methane Over Ni Catalysts Supported on Mesoporous SBA-15, MCM-41, KIT-6 and γ-Al2O3

The activity of Ni supported on mesoporous SBA-15, MCM-41, KIT-6, and a sol-gel prepared Ni/γAl2O3, for catalysing methane dry reforming was investigated. The chemical and physical characteristics of the catalysts before and after catalytic testing were investigated using X-Ray diffraction, X-ray Photoemission Spectroscopy, Transmission Electron Microscopy, Scanning Electron Microscopy / Energy...

متن کامل

Pseudomorphic Reaction: A New Approach to Produce Bulk Mesoporous Silica as Catalyst Support in Methane Reforming

Pseudomorphism is known as a suitable technique for producing mesoscale pore in silica powders keeping their original morphologies. Herein, silica discs with several millimeter dimensions have been prepared using the same method. This method has been utilized through application of pseudomorphism reaction of preshaped bodies by immersion in a solution containing surfactant and swelling re...

متن کامل

Ni-SiO₂ catalysts for the carbon dioxide reforming of methane: varying support properties by flame spray pyrolysis.

Silica particles were prepared by flame spray pyrolysis (FSP) as a support for nickel catalysts. The impact of precursor feed rate (3, 5 and 7 mL/min) during FSP on the silica characteristics and the ensuing effect on catalytic performance for the carbon dioxide, or dry, reforming of methane (DRM) was probed. Increasing the precursor feed rate: (i) progressively lowered the silica surface area ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014